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ABSTRACT

Previous studies have reported relationships between mean annual climatic variables and mean annual leaf

area index (LAI), but the seasonal and spatial variability of this relationship for different vegetation cover types

in different climate zones have rarely been explored in Australia. The authors developed simple models using

remotely sensed LAI data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and gridded

climatic data from the AustralianWater Availability Project. They were able to relate seasonal and annual LAI

of three different land cover types (tree, pasture, and crop) with climatic variables for the period 2000–09 in the

Goulburn–Broken catchment, Australia. Strong relationships were obtained between annual LAI of crop,

pasture, and tree with annual precipitation (R2 5 0.70, 0.65, and 0.82, respectively). Monthly LAI of each land

cover type also showed a strong relationship (R25 0.92, 0.95, and 0.95) with the difference between precipitation

P and reference crop evapotranspiration (PET; P 2 PET) for crop, pasture, and tree. Independent model

calibration and validation showed good agreement with remotely sensed MODIS LAI. The results from the

application of the developed model on the future impact of climate change suggest that under all climate

scenarios crop, pasture, and tree showed consistent decreases in mean annual LAI. For the future climate

change scenarios considered, crop showed a decline of 7%–38%, pasture showed a decline of 5%–24%, and tree

showed a decline of 2%–11% from the historical mean annual. These results can be used to assess the impacts of

future climatic and land cover changes on water resources by coupling them with hydrological models.

1. Introduction

Leaf area index (LAI) is the ratio of the total one-sided

area of leaf tissue per unit ground surface area. It is an

important ecohydrological parameter for understanding

the pathways and feedbacks between climate and vege-

tation and for improving agricultural water management

in a wide range of regions (Arora 2002a; Donohue et al.

2006; Ge 2009; Groenendijk et al. 2011; Nielsen et al.

2012; O’Grady et al. 2011; Ramirez-Garcia et al. 2012;

Wang et al. 2005; White et al. 2010; Zhang and Walsh

2007). Changing LAI modifies the water and energy

budget of a surface by altering the number of stomatal

openings and the surface albedo, which in turn affect

biochemical and hydrological cycles (Negr�on Ju�arez et al.

2009;Wang et al. 2005). Fromamanagement perspective,

the relationship can be usedwhen assessing the impacts of

different policy options such as afforestation, defores-

tation, vegetation rehabilitation, and changed cropping

on water yield, deep drainage, and salinity of a catchment

(Palmer et al. 2010; Peel et al. 2010; Zhang et al. 2011;

Zhao et al. 2012) and when assessing potential impacts of

future climatic (Arora 2002b; Gilgen and Buchmann

2009; Peel 2009).

Despite its importance, accurately modeling LAI is

challenging as many factors, such as the availability of

nutrients and water and management practices includ-

ing cropping, harvesting, application of fertilizer, and

revegetation, all affect LAI (Donohue et al. 2006). In areas

where water is the main limiting factor, LAI is highly

dependent on water availability (Zhang et al. 2004), so

a strong relationship between LAI and climate can occur

(Donohue et al. 2006).Most previous work has considered

the Normalized Difference Vegetation Index (NDVI),

which is calculated by dividing the difference of near-

infrared radiation (NIR) and visible radiation (VIS) by the

sum of NIR and VIS from satellite image products. Both

NDVIandLAIhave beenderived froma range of satellite

sensors including the Advanced Very High Resolution
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Radiometer (AVHRR), the Moderate Resolution Imag-

ing Spectroradiometer (MODIS), and various Landsat-

based sensors over time. They have also been derived

from field studies. The MODIS sensor operated on board

the Terra (since 2000) and Aqua (since 2002) satellites

providesMODIS-derived LAI data to the public.MODIS

has 36 spectral bands with a spatial resolution of 250m

to 1km and is designed to provide coverage of global

vegetation conditions in fine detail. Based on AVHRR-

andMODIS-derived products, a strong response between

NDVI of boreal mixed wood forest and temporal climate

variability was documented in Canada (Jahan and Gan

2011). Other studies have shown precipitation controls

the annual and seasonal variation of the NDVI in Africa

(Chamaille-Jammes et al. 2006; Richard and Poccard

1998) and North America (Wang et al. 2001). Using

MODIS-derived LAI, Palmer et al. (2010) related LAI to

mean annual aridity index for forest, woodland, and

shrubland in Australia. Using ground-based LAI data, the

LAI response of natural eucalypt forests in Australia to

average annual climate (precipitation, potential evapora-

tion, and temperature) has been reported (Ellis and

Hatton 2008; O’Grady et al. 2011; Palmer et al. 2010;

White et al. 2010).

Intercomparison of the various studies has shown that

the LAI responses of each vegetation type to climatic

variables differ because of differences in their function,

structure, and distribution (Negr�on Ju�arez et al. 2009).

Therefore, a model that can predict spatially varying LAI

at a monthly time scale using both precipitation and po-

tential evapotranspiration, which also vary spatially, un-

der different landscape and climate regions is critical for

modeling carbon, water, and energy cycle at the catch-

ment scale. A model that describes the spatial varying of

LAI of different vegetation cover types at reasonable

spatial and temporal scales could be incorporated into

hydrological models that then help us understand the

impacts of climatic changes and land use and land cover

changes on runoff in catchments.

The aims of this paper are to 1) examine the spatio-

temporal relationships between LAI of crop, pasture, and

tree and climatic variables; 2) develop a simple model that

describes spatiotemporal variability of LAI from spatio-

temporal variable climatic inputs; and 3) assess future

climate change impacts onLAI through projected changes

in climatic variables. The Goulburn–Broken catchment,

Australia, which includes three main land cover types

(crop, pasture, and tree), is taken as the case study. Using

MODIS product and ancillary data for 2000–09, statistical

relationships between seasonal and annual climatic vari-

ables and LAI obtained by remote sensing of the three

dominant land cover types on a pixel by pixel basis will be

investigated.

2. Materials and method

a. Study area

TheGoulburn–Broken catchment is located inVictoria,

southeastern Australia, and is part of theMurray–Darling

basin (MDB). The geographic location of the Goulburn–

Broken catchment spans 35.88–37.78S in latitude and

144.68–146.78E in longitude, with a total catchment area of

24 000km2 (Fig. 1a). The catchment elevation ranges from

amaximumaltitude of about 1790mMSLon the southern

side of the catchment to aminimumaltitude of about 86m

MSL on the northern side of the catchment.

The catchment has marked differences in climate

from south to north. According to the K€oppen–Geiger

climate classification, the Goulburn–Broken catchment

includes three climatic zones; from the northwest corner to

the southeast corner of the catchment, these are semiarid

(BSk, 9%); without dry season, hot summer temperate

(Cfa, 35%); and without dry season, warm summer temp-

erate (Cfb, 55%; Peel et al. 2007). The precipitation in the

catchment is influenced by mountain ranges with high

precipitation in the southern part and flat plains in the

northern part with declining precipitation as one moves

from south to north. The mean annual precipitation (2000–

09) is 1476mmyr21 in the southern mountainous part, de-

creasing to approximately 322mmyr21 in the flat northern

part of the catchment (Fig. 1b). The mean annual temper-

ature (2000–09) varies from 7.18 to 16.58C (Fig. 1c) with

a mean daily maximum of 23.58C in summer and a mean

daily minimum of 18C in winter. The mean annual refer-

ence crop evapotranspiration (Fig. 1d) for the same period

varies from 807mmyr21 in the southeast to 1287mmyr21

in the northern part of the catchment, following the spatial

pattern of the mean annual temperature.

The Goulburn–Broken catchment is covered by three

dominant land cover types: crop, pasture, and tree (Fig.

1e). Large-scale changes in vegetation cover started in

Australia afterEuropean settlementwith the expansion of

cropland (Gordon et al. 2003). Before European settle-

ment, the Goulburn–Broken catchment was covered with

grassland, woodland, and tree. Tree and woodland clear-

ing for agriculture started during the nineteenth century,

and clearing expanded for pasture development beginning

in the 1950s and reached a maximum in the 1970s (Graetz

1998). The current land cover shows most of the southern

part of the catchment is covered by tree, mainly euca-

lyptus open tall trees and eucalyptus woodlands, whereas

cropland is located in the northern part of the catchment.

b. Datasets and analysis

All climate data used in this study, except the aver-

age daily wind speed, are from the Australian Water
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Availability Project (AWAP) dataset, which provides

spline-interpolated point data (Jones et al. 2007, 2009).

The average daily wind speed data were obtained

from McVicar et al. (2008) and are also based on

spline-interpolated point data. The data used in this

study cover the period from January 1999 to December

2009. The spatial resolution of the daily precipitation

(mm), daily maximum and minimum temperature (8C),
actual vapor pressure (hPa), daily incoming solar radia-

tion (MJm22), and average daily wind speed (ms21) is

FIG. 1. (a) Location map of the Goulburn–Broken catchment in Australia, (b) mean annual precipitation (mm),

(c) mean annual temperature (8C), (d) mean annual reference crop evapotranspiration (mm) for the period 2000–

09, and (e) spatial distribution of land cover types (water bodies, crop, pasture, and tree) in the study area.
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0.058 3 0.058 (approximately 5km 3 5km). The 9-s spa-

tial resolution elevation (m) data were obtained from

Geoscience Australia (2008) and resampled to 0.058 3
0.058 using the average aggregation method in ArcGIS.

The daily climate data were summed or averaged into

monthly and annual values on a pixel by pixel basis for

further analysis. In this study, monthly average refer-

ence crop evapotranspiration (PET, mmday21) was

estimated using the Food and Agriculture Organization

(FAO-56) Penman–Monteith method [see Eq. (1) and

Allen et al. (1998)] and monthly average data. Total

monthly reference crop evapotranspiration was calcu-

lated by multiplying the average monthly reference crop

evapotranspiration estimate by the number of days of

the respective month (Allen et al. 1998):

PET5

0:408D(Rn 2G)1 g
900

Ta1 273
u2(uS 2 ua)

D1 g(11 0:34u2)
, (1)

where D is the slope of the vapor pressure curve

(kPa 8C21) at air temperature; Rn is the average monthly

net radiation at the grass surface (MJm22 day21);G is the

soil heat flux (MJm22 day21), which can be estimated

using Allen et al. (1998) as G 5 0.14 (Ti 2 Ti21) for

monthly calculation where Ti and Ti21 are the average

monthly air temperatures (8C) for month i and i 2 1,

respectively; g is the psychrometric constant (kPa 8C21);

Ta is the average monthly mean temperature (8C); u2 is
the average monthly wind speed (ms21) at 2-m height;

and es 2 ea is the average monthly saturation vapor

pressure deficit (kPa). This study adopted the properties

of the FAO-56 hypothetical crop of assumed height of

0.12m, a surface resistance of 70 sm21, and an albedo of

0.23 (Allen et al. 1998; McMahon et al. 2013).

The land cover map for the Goulburn–Broken cat-

chment was extracted from the MODIS dynamic land

cover product MCD 12Q2.005, which is available from

the MODIS website (http://modis.gsfc.nasa.gov/data/

dataprod/index.php). These products provide the an-

nual land cover type from 2001 through 2009 at a spatial

resolution of approximately 500m 3 500m. First, we

grouped similar vegetation into three dominant land

cover types (crop, pasture, and tree) in the catchment.

Tree comprised about 48%, pasture and grass occupied

39%, crop covered about 12%, and water bodies cover

1% of the catchment area. The annual time series of

the three dominant land cover maps from 2000 to 2009

were then derived for each MODIS pixel. The LAI data

were downloaded from the Beijing Normal University

(BNU; available from http://globalchange.bnu.edu.cn).

This dataset was created with an improved retrieval

algorithm to reduce uncertainties that arise from cloud,

snow, and instrument problems in the MOD15A2 LAI

products (Yuan et al. 2011). The retrieval process for

MOD15A2 LAI values relies on two algorithms, the

main and the backup. The three-dimensional radiative

transfer model generates several spectral and angular

signatures that can be compared to the MODIS dir-

ectional surface reflectance values through a lookup

table for different sets of canopy realization and leaf

architecture views. Further documentation of the theo-

retical background and mathematical derivation of the

main algorithm can be found in Knyazikhin et al. (1998).

The second, or backup, algorithm is a set of regression

curves [see Eq. (2)] between LAI and NDVI for dif-

ferent biomes that are activated when the main algo-

rithm fails (Yuan et al. 2011):

LAI5 f (NDVI), (2)

where f is the nonlinear regression curve between LAI

and NDVI (Fig. 2) for different biomes and NDVI is

calculated by dividing the difference of NIR and VIS by

the sum of NIR and VIS:

NDVI5
NIR2VIS

NIR1VIS
. (3)

An NDVI value of zero indicates no green leaves and

a value close to 11 indicates densely green leaves. The

difference between the two algorithms is reported as

a quality control layer, which helps users to assess the

accuracy of the retrieval. Better results are obtainedwhen

the LAI is estimated from themain algorithm (Yuan et al.

2011).

The BNU MODIS LAI dataset is a composite LAI

from January 2000 to December 2009 at 8-day intervals

at a spatial resolution of 0.00838 3 0.00838 (approxi-

mately 1 km 3 1 km). The monthly LAI was calculated

by taking the weighted average based on the number of

days that contributed to that 8-day-interval LAI. The

BNU MODIS LAI has 46 images per year, which start

on the first day of the year and continue to the 361st day

of that year. Detailed information on the reprocessing

procedure and its validation can be found in Yuan et al.

(2011). The quality of MOD15A2 LAI dataset for

Australia has been assessed in previous works (Coops

et al. 2012; Fang et al. 2012; Fuentes et al. 2008; Guindin-

Garcia et al. 2012; Hill et al. 2006; Sea et al. 2011). Their

results suggest MOD15A2 LAI product is in good

agreement with ground-based measurements of canopy

LAI at different sites in Australia. A comparison be-

tween the original MOD15A2 LAI and BNU MODIS

LAI in our study area showed that they are the same

except for some improvement in some months (not

shown).
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To establish relationships between LAI and climatic

variables for a given land cover type, the mismatch in

spatial resolutions among the land cover type, BNU

MODIS LAI, and AWAP climatic data was resolved in

the following way. If the LAI pixel fell completely

within an AWAP pixel, then the LAI pixel was assigned

the climatic variable value of thatAWAPpixel (Figs. 3a,c).

Otherwise, the area-weighted average of the climatic

variable for all AWAP pixels that intersected the LAI

pixel was taken. The percentage of each land cover type in

the respective BNUMODISLAI pixel was first calculated

from the annual land cover type map (Fig. 3b).Where one

land cover type dominates (.80%) theLAI pixel, the LAI

value of that pixel was assigned to that cover (Figs. 3c,d), in

case where the BNU MODIS LAI pixels that contain

water bodies such as rivers or reservoirs and irrigation

were removed from our sample to avoid the effect of ad-

ditional water supply. The above processing avoided the

problem of land cover type heterogeneity in the LAI cal-

culations.

c. Modeling LAI–climate relationships

The annual and monthly LAI of the three vegetation

types were regressed against the annual and the 1–12-

month moving average of precipitation P, mean tem-

perature T, reference crop evapotranspiration PET,

and precipitation minus reference evapotranspiration

(P 2 PET) here after moisture state on a pixel by pixel

basis. All annual andmonthly LAI values for each of the

cover types for the period 2000–09 were used in de-

veloping the relationships. The time lags for the moving

average that gave the strongest relationship using the

coefficient of determination were selected during pre-

liminary analysis. The seasonal variation of crop and

pasture LAI was explained best with 6- and 9-month

moving averages of moisture state (P 2 PET). Because

of many LAI pixels (1 km 3 1 km) falling within one

climate pixel (5 km 3 5 km), the plot of LAI against its

respective explanatory climatic variables shows vertical

scatter. Hence, the moisture state was grouped into bins

of widths of 0.0928, 0.1069, and 0.1079mm for crop,

pasture, and tree, respectively, using Botev et al. (2010),

and the average LAI of each bin was calculated. The

effect of the bin width was assessed by increasing and

decreasing the bin width calculated from Botev et al.

(2010) and was found to have little effect on the re-

gression analysis. The regression was then made be-

tween the bin-averaged LAI and the bin average of the

climate variable. Based on scatterplots of the data,

a feasible model was selected for the relationship be-

tween climate variables and LAI. The preliminary curve

fitting was conducted on the following linear and non-

linear models, and the best performing model (the

largest coefficient of determination R2 and smallest

standard error SE) was selected. Jahan and Gan (2011)

found a nonlinear model type [Eq. (5)] to predict NDVI

of forest from climatic variables. In this study, both

linear [Eq. (4)] and nonlinear [Eqs. (5)–(7)] models were

FIG. 2. Relationships betweenNDVI andLAI of crop, grass/pasture, and tree, which are used

to estimate LAI from NDVI as implemented in MODIS backup algorithm (reproduced from

Knyazikhin et al. 1999).
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assessed to relate LAI and climate for annual and

monthly time scales:

LAI5a01a1X11a2X2 , (4)

LAI5a01a1X
a
2

1 1a3X
a
4

2 , (5)

LAI5a1 3X
a
2

1 3a
X

2

3 , and (6)

LAI5
a1

11 exp[2(X12a2)/a3]
, (7)

where a0, a1, a2, a3, and a4 are model parameters

that need to be calibrated and X1 and X2 are climate pre-

dictors (precipitation, reference crop evapotranspiration,

mean temperature, and moisture state). For crop and

pasture 6-month moving-averaged P, PET and T were

used as predictors, whereas for tree 9-month moving-

averaged P, PET and T were used (either individually or

combined together), while the monthly LAI was used as

the predictand. Calibration of the model parameters was

based on the period (2000–04) tominimize the root-mean-

square error between the modeled LAI and the remotely

sensed BNU MODIS LAI in a least squares framework.

Data from 2005 to 2009 were used to validate the cali-

brated models. The t-test statistic was used to test whether

or not the model parameters were statistically different

from zero. During a preliminary analysis, the best per-

forming models from the available combinations of cli-

mate variables were selected. The spatial predictability of

the monthly LAI of each land cover type from the spatial

FIG. 3. (a) The spatial alignment of LAI pixels with theAWAP, (b) the spatial alignment of land cover type (tree,

pasture, crop, andwater bodies) pixels with theAWAPgrid, (c) land cover types with both theAWAP climate pixel

grid (large rectangle) and MODIS LAI pixel grid (small rectangles) shown, and (d) the spatial alignment of land

cover types inside the MODIS LAI pixel.
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variable precipitation and reference evapotranspiration

were represented using the spatial distribution of R2 for

each BNU MODIS LAI pixel. The coefficient of de-

termination between predicted monthly LAI using the

nonlinear model type [Eq. (7)] and observed monthly LAI

from the BNU MODIS were calculated for each BNU

MODIS LAI pixel. Each BNUMODIS LAI pixel has 120

months from 2000 to 2009 and the same number of mod-

eled LAI based on a nonlinear relationship with moisture

state.

d. Preparing climate model output

Climate projections from the Coupled Model Inter-

comparison Project phase 5 (CMIP5) Global Climate

Model (GCM), used in the Intergovernmental Panel on

ClimateChange (IPCC)FifthAssessmentReport, are used

in this study to assess potential climate change impacts on

LAI. Four representative concentration pathways (RCPs)

provide radiative forcing scenarios over the twenty-first

century. Further information on the development and de-

sign of theRCPs can be found inMoss et al. (2010) and van

Vuuren et al. (2011). Each RCP is suffixed with its esti-

mated radiative forcing value at the end of the twenty-first

century relative to the preindustrial value. For example,

the acronym RCP8.5 indicates that radiative forcing in-

creases throughout the twenty-first century to a maximum

of 8.5 Wm22 at the end of the century (see Table 1) for

more details.

To assess the impacts of future climate change on LAI

in the Goulburn–Broken catchment, the averages from

the 30 different climatemodel outputs fromCMIP5GCM

(http://climexp.knmi.nl/) were statistically downscaled

using the delta change method. One of the advantages of

using this method is that an observed database is used as

the baseline, resulting in a consistent set of scenario data.

The study area is covered by four (2.58 3 2.58) CMIP5

GCM climate model pixels, so the area-weighted average

precipitation and mean temperature were used for esti-

mating the delta values:

TD( j)5Tobs( j)1DT( j) and (8)

DT( j)5Tprojn( j)2Tcontrol( j) , (9)

where TD is the downscaled monthly temperature for

a climate change scenario simulation, Tobs( j) is the ob-

served temperature in the historical period (1981–2010)

for month j, and DT( j) is the change in the 30-yr mean

temperature as projected by the climate model Tprojn(j)

for three future periods (2011–40, 2041–70, and 2071–

2100) relative to the control (1981–2010) climate model

simulation Tcontrol(j). The delta change method for pre-

cipitation can be described by the following equations:

DP( j)5
Pprojn( j)

Pcontrol( j)
and (10)

PD( j)5Pobs( j)3Dp( j) , (11)

where PD is the downscaled monthly precipitation for

the projected future climate change scenario, Pobs( j) is

the observed monthly precipitation in the historical

period (1981–2010) for month j, and DP( j) is the change

in 30-yr mean precipitation as simulated by the climate

model Pprojn( j) for three future periods (2011–40, 2041–

70, and 2071–2100) relative to the control simulation

Pcontrol( j). For future climate scenarios, the PET was

computed using the projected minimum and maximum

temperature, keeping the other input (wind speed, ac-

tual vapor pressure, and solar radiation) the same as the

historical observation during 1981–2010.

3. Results and discussions

a. Relationship between annual LAI and climatic
variables

Based on the lumped annual LAI and annual pre-

cipitation, annual reference crop evapotranspiration,

and moisture state, relationships were investigated for

the whole period 2000–09. A strong linear relationship

(R2 5 0.70) was found between the average annual

LAI of crop and mean annual precipitation (Fig. 4a).

TABLE 1. The four representative concentration pathways (reproduced from Moss et al. 2010).

RCPs Radiative forcing Concentration (ppm) Pathway

RCP8.5 .8.5Wm22

in 2100

.1370 CO2

equivalent in 2100

Rising

stabilization without

RCP6.0 ;6Wm22 at

stabilization after 2100

;850 CO2 equivalent

(at stabilization after 2100)

Overshoot

stabilization without

RCP4.5 ;4.5Wm22 at

stabilization after 2100

;650 CO2 equivalent

(at stabilization after 2100)

Overshoot

RCP2.6 Peak at ;3Wm22

before 2100 and then declines

;490 CO2 equivalent before

2100 and then declines

Peak and decline
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The annual LAI of crop showed a weak (R2 5 0.40)

negative relationship with annual reference crop eva-

potranspiration (Fig. 4b). Some of this weaker rela-

tionship is likely due to actual evapotranspiration and

plant growth being more strongly controlled by pre-

cipitation than potential evapotranspiration, as well as

phenological effects like crop growth and harvesting.

The annual moisture state (P 2 PET) showed a strong

relationship (Fig. 4c; R2 5 0.71), but the relationship is

strongly influenced by the precipitation term since the

relationship with reference crop evapotranspiration

alone was weak. The improvement of R2 from adding

the reference crop evapotranspiration was not consid-

erable. The other important point to be considered is

that most of the crop in the study area is located in the

semiarid parts of the catchment, where plant growth is

strongly controlled by the availability of water rather

than energy, as available energy is far in excess of

available water (Zhang et al. 2004).

The annual LAI of pasture is also linearly related to

the annual precipitation, annual reference crop evapo-

transpiration, and the annual moisture state (P 2 PET)

FIG. 4. Annual LAI against annual P, annual PET, and annual P 2 PET for (a)–(c) crop, (d)–(f) pasture, and (g)–(i) tree, respectively.
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over the study region from 2000 to 2009. Like cropped

areas, the annual precipitation showed the higher con-

trol on the annual LAI of pasture (Fig. 4d) than annual

reference crop evapotranspiration (Fig. 4e). The possi-

ble reason for this weak relationship with annual refer-

ence crop evapotranspiration is the same as that of crop

stated above.

Unlike a linear relationship of crop and pasture, the

annual LAI of tree showed a strong (R2 5 0.82) positive

nonlinear relationship with annual precipitation (Fig.

4g) and annual moisture state (Fig. 4i). The annual LAI

also showed strong (R2 5 0.87) negative nonlinear re-

lationships with annual reference crop evapotranspira-

tion (Fig. 4h). From the scatterplot of tree, the response

of the annual LAI of tree to annual precipitation is

stronger for trees where annual precipitation is below

1000mm. Trees receiving annual precipitation above

1000mm showed less sensitivity to change in annual

precipitation. All model parameters for the annual LAI

are statistically different from zero (p , 0.001) for all

cover types and are provided in Table 2.

b. Relationship between monthly LAI and climatic
variables

In a preliminary analysis (Table 2), the four models in

Eqs. (4)–(7) were compared with the aim of selecting

a single model that uses lumped monthly LAI. The

nonlinear models Eqs. (5) and (6) could predict the

monthly LAI of crop and pasture but were poor for

tree. The monthly LAIs of each land cover type were

regressed against combinations of the 6- and 9-month

moving average climatic variables for all years (2000–

04). The nonlinear model Eq. (5) performed similarly to

nonlinear model Eq. (6), except in predicting negative

LAI via the intercept term. Hence, Eq. (6) avoided this

problem and performed well for crop and pasture but

produced a poor fit for tree (Table 2). The models

worked best when forced by precipitation and temper-

ature out of all the various possible climatic variable

combinations. Themodel parameters based on the period

(2000–04) of analysis are shown in Table 2. Themodel for

the entire period (2000–09) for crop performs well (R2 5
0.85), as does the pasturemodel (R25 0.75), but performs

poorly for tree (R2 5 0.45).

The other nonlinear candidate [Eq. (7)] for modeling

monthly LAI consistently performed well for all land

cover types. The best performance was found when the

lumped monthly LAI was regressed against a 6-month

moving average for crop and pasture and a 9-month

moving average of the moisture state (P 2 PET). The

coefficients of determination of the model calibration

for the whole period of study were 0.93, 0.95, and 0.95

(Table 2) for crop, pasture, and tree, respectively. In-

dependent calibration for the period 2000–04 and the

validation period 2004–09 were conducted, and the

model performance can be considered good with all

parameter values statistically significantly different from

zero (p , 0.001). The calibration and validation of the

model are shown in Figs. 5a and 5b for crop, Figs. 5c and

5d for pasture, and Figs. 5e and 5f for tree.

The performance of the calibrated crop, pasture, and

tree models, based on [Eq. (7)] and the moving-average

TABLE 2. Result of model parameter calibration for both linear and nonlinear models with R2 and SE for the whole period (2000–09) of

annual and (2000–04) of monthly analysis. Precipitation parameters for the nonlinear model [Eqs. (5) and (6)] are in bold.

Model type Cover type Predictors Time scale

Model parameters

a0 a1 a2 a3 a4 R2 SE

Linear [Eq. (4)] Crop P Annual 0.098 0.002 — — — 0.70 0.19

Crop PET 4.140 20.003 — — — 0.40 0.23

Crop P 2 PET 2.475 0.002 — — — 0.71 0.18

Pasture P 0.460 0.002 — — — 0.65 0.24

Pasture PET 3.829 20.002 — — — 0.52 0.21

Pasture P 2 PET 1.926 0.001 — — — 0.70 0.20

Nonlinear [Eq. (7)] Tree P — 3.816 208.739 412.334 — 0.82 0.38

Tree PET — 4.051 2104.631 1155.805 — 0.87 0.39

Tree P 2 PET — 3.822 277.037 2716.967 — 0.84 0.40

Nonlinear [Eq. (5)] Crop P, T Monthly 21.6017 0.0002 2.0232 215.8444 0.1020 0.88 0.28

Pasture P, T 224.0027 0.0082 1.1243 28.3731 20.0534 0.78 0.31

Tree P, T 245.5570 46.8648 0.0186 24.3495 20.3275 0.43 0.44

Nonlinear [Eq. (6)] Crop P, T — 0.440 0.833 0.861 — 0.85 0.29

Pasture P, T — 0.412 0.536 0.937 — 0.75 0.32

Tree P, T — 0.603 0.321 1.022 — 0.45 0.44

Nonlinear [Eq. (7)] Crop P 2 PET — 136.484 159.456 42.561 — 0.93 0.25

Pasture P 2 PET — 6.250 43.616 62.616 — 0.95 0.20

Tree P 2 PET — 4.209 257.185 36.948 — 0.95 0.25
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moisture state (P 2 PET), is shown spatially across the

catchment through the distribution of R2 between

MODIS monthly LAI and predicted monthly LAI

(Fig. 6a). The coefficient of determination range from

R2 5 0.1–0.90. A weak response in LAI is shown when

moisture state (P2 PET) is less than2100mm for both

crop and pasture. When moisture state increases above

this level, the increasing LAI responds as P 2 PET

FIG. 5. Monthly LAI against the 6- (crop and pasture) and 9-month (tree) moving average of P 2 PET: (a),(c),(e)

Calibration and (b),(d),(f) validation for crop, pasture, and tree, respectively, using the nonlinear model [Eq. (7)].
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increases. Whereas for tree, monthly LAI is strongly

controlled by moisture state (P 2 PET) below 2100mm,

while the relationship betweenmonthly LAI andP2 PET

flattens for moisture state (P 2 PET) above 2100mm.

The lowest LAI in tree areas was around 1, indicating

a perennial canopy is maintained.

The spatial variation in LAI of crop and pasture is well

captured in most parts of the catchment but showed low

spatial correlation with the moisture state P 2 PET for

tree located in the mountain part of the catchment. Part

of the reason is due to with the spatial distribution of

moisture state P2 PET and where the relationships are

strongest for crop and pasture (P 2 PET . 2150mm)

and tree (P 2 PET , 0mm). We should also note that

our relationships are between bin averages, where we

get very high R2 values, whereas our map (Fig. 6a) of

model performance is between observed MODIS pixel

values of LAI and our model estimate of a bin-averaged

LAI. Where the variance around the bin-averaged LAI

is small, we will have a good prediction, and where the

variance around the bin-average LAI is large, we will

have a poor prediction. The other reason for the good

spatial performance of crop and pasture could be related

to the flat landscape with little or no access to ground-

water storage, whereas most of the trees that are located

in the mountain part of the catchment could access

the groundwater or soil water storage to buffer the water

deficit, as explained byO’Grady et al. 2011 andThompson

FIG. 6. (a) Spatial distribution of the R2 between monthly predicted LAI using Eq. (7) and observed LAI from

MODIS sensor, (b) average of mean monthly moisture state (P 2 PET), (c) the observed mean annual LAI from

MODIS sensor, and (d) modeled mean annual LAI using Eq. (7), all for the study period (2000–09).

1602 JOURNAL OF HYDROMETEOROLOGY VOLUME 15



et al. 2011. The spatial pattern of predicted mean annual

LAI showed a good agreement with the spatial pattern of

the average of themeanmonthlymoisture state (P2 PET;

Figs. 6b,d). The spatial pattern comparison between the

observed mean annual LAI from the MODIS sensor

(Fig. 6c) with the predicted mean annual LAI (Fig. 6d)

from the nonlinear model [Eq. (7)] also showed good

agreement. Hence, moisture state dictated the spatial

pattern and variability of LAI of crop and pasture and,

to some extent, tree.

c. Assessing climate change impacts on LAI

The potential impacts of future climate change on the

LAI of crop and pasture were assessed using the non-

linear model [Eq. (7)] because the input (precipitation

and temperature) required area readily available from

the CMIP5 GCM output. The downscaled GCM pro-

jections show increases in mean monthly temperature

and generally decreases in mean monthly precipitation

for the three projected future periods (2011–40, 2041–70,

and 2071–2100). Projected changes in mean monthly

precipitation (Figs. 7a–c) and reference evapotranspira-

tion (Figs. 7d–f) for the three future periods are shown. A

consistent increase in mean monthly temperatures is ex-

pected, ranging from 18 to 48C among the climate sce-

narios. This will increase the potential evapotranspiration

up to 48%, 42%, and 38% from the historical (1981–2010)

mean monthly winter potential evapotranspiration in

crop, pasture, and tree covers, respectively. Decreases in

mean monthly precipitation in autumn and spring are

between 5% and 10% and are up to 20% in winter, while

increases in mean monthly precipitation in summer are

up to 8% in comparison with the historical meanmonthly

precipitation for all cover types.

As discussed in the previous section, the nonlinear

model type of Eq. (7) is the best model from the candi-

date nonlinear models and was used to assess the impact

of climate change on the three land cover types. The

simulatedmonthly LAI of crop, pasture, and tree showed

decreases under the four projected scenarios as compared

with the historical mean monthly LAI. The mean

monthly LAI of crop decreased by 5%–14%, pasture

decreased by 3%–9%, and tree decreased by 1%–4%

under the lowest CO2 emission scenario (RCP2.6). For

the largest CO2 emission scenario (RCP8.5), the re-

duction in crop meanmonthly LAI was estimated to vary

from 12% to 45% and in pasture from 5% to 32%, while

that of tree decreased from 2% to 16%, as shown in

Figs. 8a–c, 8d–f, and 8g–i, respectively. Similarly, the

mean annual LAI is projected to progressively decrease

in all three future periods, under all four climate change

scenarios (Table 3). Based on our LAI–moisture state

(P2 PET) model, crop mean monthly and annual LAI is

more sensitive than pasture and tree to projected climate

FIG. 7. The percentage change in future (2011–40, 2041–70, and 2071–2100) (a)–(c)meanmonthly precipitation and (d)–(f) reference crop

evapotranspiration from the historical (1981–2010) mean under the four climate change scenarios.
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change. The mean monthly and annual LAI of tree was

found to be less sensitive.

4. Conclusions

The LAI of vegetation is an important ecohydrological

parameter for understanding the dynamic interactions

between climate and vegetation and for improving agri-

cultural water management in arid and semiarid areas.

This study investigated relationships between LAI of

three main land covers (tree, pasture, and crop) in the

study region with climate (precipitation, temperature,

and reference crop evapotranspiration) through both

linear and nonlinear regression models. The results show

that both the annual andmonthly variations of LAI for all

the land cover types are highly related to climatic varia-

tions. However, the responses to changes in seasonal and

annual climatic variations differed among the land cover

types. Of the climatic variables considered, precipitation

had the most influence on annual variations in LAI in all

land cover types. The moisture state P2 PET was found

to drive the seasonal variations of LAI in all land cover

types and explained 93%, 94%, and 95% (Table 2) of the

seasonal variation of LAI of crop, pasture, and tree,

respectively.

The developed models [Eq. (7)] were used to assess

possible future climate change impacts on vegetation

production in the study region, and the results suggest

that under all climate change scenarios, both crop and

pasture showed consistent decreases inmean annual LAI

in the range of 10%–38% for crop, 5%–24% for pasture,

and 2%–11% for tree (Table 3). However, pasture LAI

compared to tree LAI was found to be less sensitive to

climate change than crop LAI under all climate change

FIG. 8. The percentage change in future (2011–40, 2041–70, and 2071–2100) mean monthly LAI of (a)–(c) crop, (d)–(f) pasture, and

(g)–(i) tree from the historical (1981–2010) mean under the four climate change scenarios. The line descriptor legend of Fig. 7 also

applies to Fig. 8.
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scenarios. Furthermore, uncertainty associatedwith long-

term climate projections can be considered by using in-

dividual climate model outputs instead of using the mean

of all climate model output, as used here. The results can

also be used to assess the impacts of future climate and

land cover changes on water resources by coupling them

with hydrological models, which will assist with assess-

ments of the best land use management options under

changing climate. From a hydrologic modeling perspec-

tive, considering LAI as a fixed value in hydrologic or land

surface modeling of the long-term water balance will lead

to overestimation or underestimation of thewater balance

components (runoff, evapotranspiration, and groundwa-

ter recharges) because of the interannual and seasonal

variability of LAI in response to climate variables. The

findings from this study can be readily coupled with hy-

drological models to improve the precision of water bal-

ance simulations at catchment and continental scales.
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